

Neuromodulation for Epilepsy Treatment

Chelsey Ortman, MD

Assistant Professor, Pediatric Neurology and Pediatric Epilepsy The University of Texas at Austin, Dell Children's Medical Center

6th Annual Pediatric Neuroscience Symposium May 17, 2025

The <u>video of the following presentation</u> has been made available for free by UT Health Austin Pediatric Neurosciences at Dell Children's at:

https://youtu.be/4syzqDgRwqo?feature=shared

To see all event presentations, please use this link for the 6th Annual Practical Pediatric Neuroscience Symposium <u>presentation playlist</u>:

https://youtube.com/playlist?list=PLPPnZ7QxWdeR-cpRyBnU2C2eEVh1bW1YR&feature=shared

Interprofessional Continuing Education

Disclosure

Chelsey Ortman, MD

- I have no relevant financial relationships with any ACCME-defined commercial interest* to disclose.
- 2. I will not discuss off label use and/or investigational use in my presentation.
- 3. All Ascension planners, reviewers, and course directors have no relevant financial relationships with ACCME-defined commercial interests

^{*}A commercial interest is any entity producing marketing, re-selling, or distributed health care good and services consumed by, or used on, patients.

Outline

- Drug-resistant epilepsy (DRE) and neuromodulation
- Discuss the evidence, limitations, and advantages of neuromodulation:
 - Vagus nerve stimulation (VNS)
 - Deep brain stimulation (DBS)
 - Responsive neurostimulation (RNS)
- Case study

Drug-resistant epilepsy (DRE)

- When seizures continue despite trials of at least 2 antiseizure medications (ASMs)
 - Caveat: ASMs appropriately chosen and adequately dosed
- Epilepsy affects ~470,000 children in the United States
- DRE affects 1/3 of those children

Drug-resistant epilepsy (DRE)

- Goals of treatment in DRE include:
 - Seizure control
 - + Reducing risk of sudden unexplained death in epilepsy (SUDEP)
 - → Preventing seizure-related injuries and hospitalizations
 - Improved quality of life
 - + Ameliorating ASM side effects
 - + Improving depression, anxiety, and psychosocial detriment
 - + Allowing for developmental progression

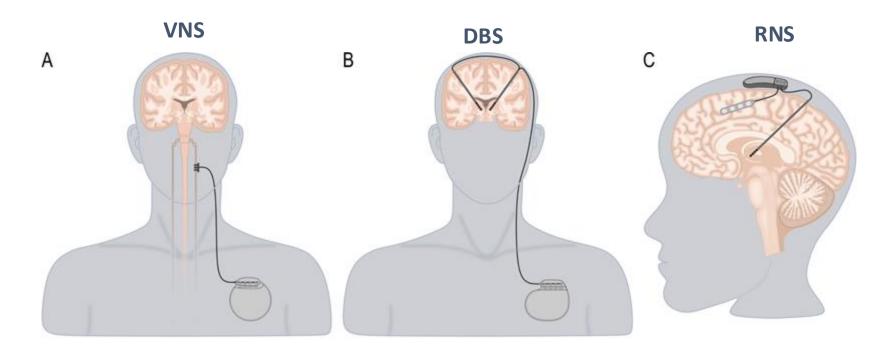
Drug-resistant epilepsy (DRE)

- Surgical treatments can be helpful in DRE:
 - Targeted resection or ablation
 - Corpus callosotomy
 - Neuromodulation
- Strongly consider ketogenic diet trial
- In DRE, <24% likelihood an additional ASM will fully control seizures

What is neuromodulation?

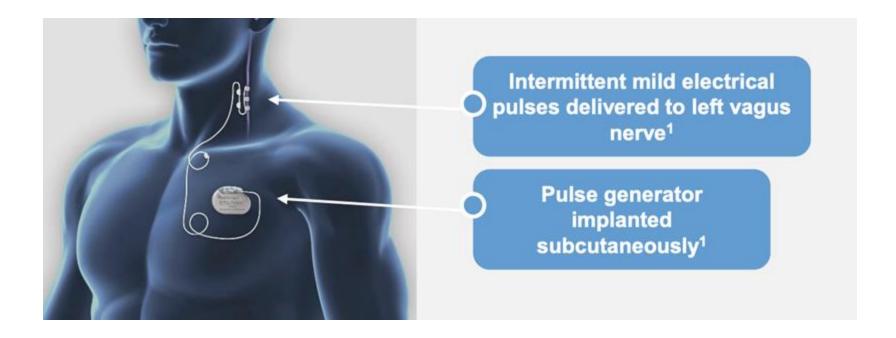
- Technology that impacts nervous system activity
 - Implanted and non-implanted devices
 - Electrical, chemical, or other agents
 - Reversibly modifies neuronal activity

What is neuromodulation?



- Highly targeted to specific areas
 - Vagus nerve stimulation (VNS): left vagus nerve (CN X) → modulates thalamocortical circuits (theoretically)
 - Deep brain stimulation (DBS): anterior nucleus (ANT) or centromedian nucleus (CMN) of the thalamus
 - Responsive neurostimulator (RNS): can be placed throughout the cortex and/or in thalamic nuclei

What is neuromodulation?



Vagus nerve stimulation

1. VNS Therapy ™ System Patient's Guide for Epilepsy. LivaNova USA, Inc.; 2022.

2. Wheless, et al. Epilepsy Behav. 2018

VNS indications for epilepsy

- FDA: patients > 4 years with drug-resistant epilepsy (continued seizures with at least 2 appropriately chosen antiseizure medications)
- Seizure focus unclear or in eloquent cortex
- Patient input

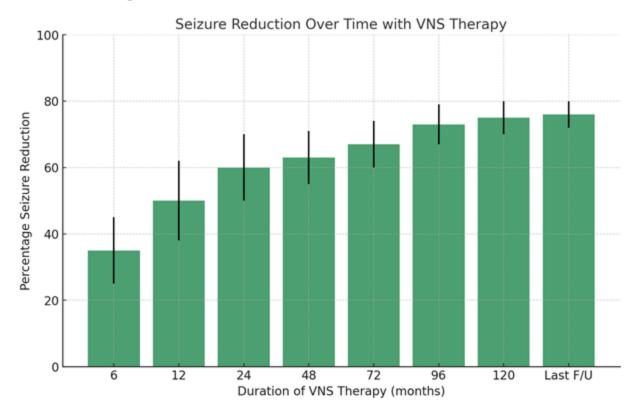
VNS features

Open loop

Original use of VNS
Scheduled delivery of
current (ex: stim on 30 s, off
5 min)

Closed loop

AutoStim (in last 15 years)
Activated by HR change
Shown to help decrease
seizure severity, duration,
frequency


Magnet

Manual activation of therapy Typically with clinical events

VNS efficacy over time

Pooled analysis of VNS outcomes

Systematic review and meta-analysis of 101 studies

Pooled prevalence estimate for patients with ≥50% seizure reduction = 56%

Pooled prevalence estimate for seizure freedom = 12%

Association with better seizure outcomes w/VNS: fewer ASMs, older age

Contraindications and considerations

- Absolute:
 - Left vagotomy
- Relative / considerations:
 - Pregnancy (safety not established)
 - Active peptic ulcer disease
 - Insulin-dependent diabetes mellitus
 - Pre-existing swallowing, cardiac, or respiratory difficulties; smoking
 - May affect other implanted devices (i.e. pacers), requires careful programming
 - Underlying arrhythmias postoperative bradycardia can occur

Potential adverse effects

- Most common: coughing, hoarseness, dyspnea, and headache – generally improve over time
- Sleep apnea (especially with higher current)
- Surgical: infection, Horner's syndrome, vocal cord paralysis
- Lead fracture, generator malfunction
- Need for battery replacement (typically 5-7 years)
- · Rare: paresthesia, insomnia, nausea, ataxia, dyspepsia

FDA approved uses of DBS in epilepsy

Approved in 2018

Open-loop stimulation of the bilateral anterior nucleus of the thalamus

Ages <u>18+</u> years (with ongoing pediatric studies)

For intractable focal epilepsy with or without secondary generalization

SANTÉ trial outcome

- For 110 implanted patients from 2004-2016
- At 7 years post-implant, median seizure frequency reduction from baseline was 75% (p<0.001)
- Twenty patients (18%) reported seizure freedom at 7 years

Reported adverse events at 5 years (SANTÉ trial)

Hardware-related in 22.7%:

- Paresthesia (18.2%)
- Implant site pain (23.6%)
- Implant site infection (12.7%)
- Electrode misplacement (8.2%)

Procedural-related in 4.5%:

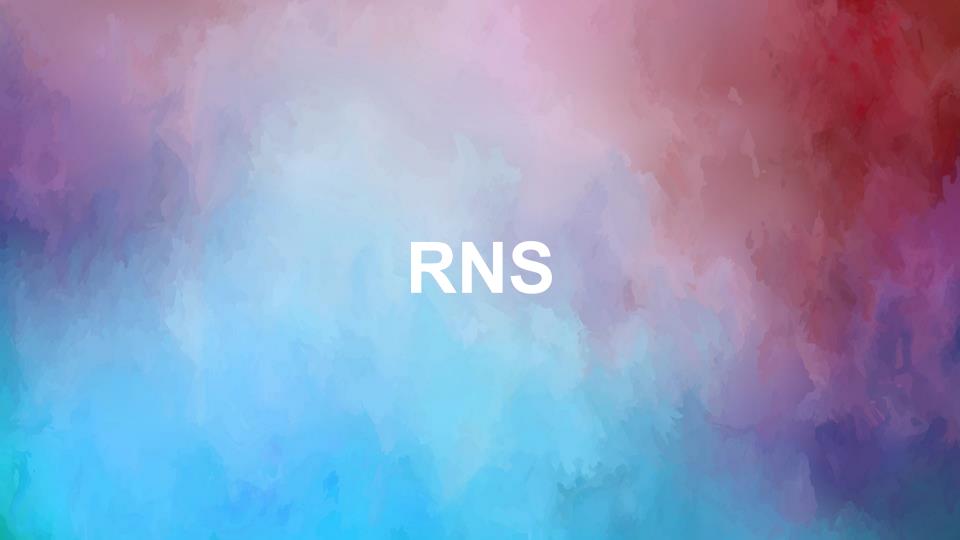
Asymptomatic intracerebral hematoma

Self-reported neuropsychological symptoms:

- Depression (32.7%)
- Memory impairment (27.3%)

Advantages

- Non-lesional approach: approved for focal (ANT) and generalized (CMN) epilepsy
- Titration of stimulation parameters to maximize benefit and reduce adverse effects
- Promising preliminary data even in patients with prior VNS and resective surgery



Disadvantages

- Currently requires invasive intracranial implantation of electrodes and extracranial implantation of stimulation generator
- Battery replacement (typically after 10-15 years, now with rechargeable model)

Introduction to RNS

Responsive neurostimulation (RNS) was approved in 2013 for ages 18+ with drug-resistant focal epilepsy with 1-2 epileptogenic foci

RNS is a "closed-loop" system that continuously monitors electrical activity at the zone of implantation

RNS responds with electrical stimulation when epileptiform activity is detected, with detection parameters programmed by the clinician

Effectiveness

- Initial randomized, placebo-controlled, multicenter trial of 191 patients showed seizure reduction of 38% in stimulated group vs 17% in controls
- Median 53% seizure reduction in stimulated patients at 2 years and 48-66% at 3-6 years after implantation
- Location of seizure focus appears to be relevant:
 - 70% improvement in the frontal or parietal lobe
 - 58% in the temporal lobe
 - 51% with multi-lobar onset

Advantages

- Tailor implantation to targeted cortical/subcortical areas
- Long-term electrocorticography
 - Data for or against a proposed focal resection
 - Monitor response to medications
 - Understand seizure triggers and diurnal data

Disadvantages

Requires intracranial placement of generator and leads, and often also requires prior invasive stereoelectroencephalography to pinpoint seizure focus

Battery replacement (typically 7-10 years)

Patients must remember to periodically upload data and come to clinic for adjustments

Complications

- Intracranial hemorrhage (< 5%), none with long-term sequelae)
- Infection risk (5%)
- Implant site pain (16%)
- Headache (11%)
- Uncomfortable sensation (dysesthesia) (6%)

Case example

"Eli" is a 16-year-old male with mild intellectual disability and daily generalized tonic and generalized tonic-clonic (GTC) seizures associated with Lennox-Gastaut syndrome (LGS).

He has prolonged tonic-clonic seizures lasting 20 minutes or more in times of illness.

He has tried 8 different antiseizure medications without significant reduction in daily seizures.

Eli's family is interested in epilepsy surgery as a possible palliative treatment for his daily seizures.

How would you advise the family about the potential options for neuromodulation?

Case example

- Eli undergoes VNS placement, complicated by slight hoarseness at 1 year post-placement, which is alleviated by reducing the current of stimulation in clinic.
- He has approximately 50% reduction in the frequency of GTC seizures and 40% reduction in the frequency of tonic seizures at 2 years post-placement, but he continues to have occasional episodes of prolonged GTCs over 20 minutes when he is ill.
- His family is wondering if there are any other surgical therapies that might be available as he reaches adulthood.

References

Zack MM, Kobau R. National and State Estimates of the Numbers of Adults and Children with Active Epilepsy - United States, 2015. MMWR Morb Mortal Wkly Rep. 2017 Aug 11;66(31):821-825.

Chen Z, Brodie MJ, Liew D, Kwan P. Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol. 2018 Mar 1;75(3):279-286. Erratum in: JAMA Neurol. 2018 Mar 1;75(3):384.

Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics. 2024 Apr;21(3):e00308.

VNS Therapy TM System Patient's Guide for Epilepsy. Houston, TX: LivaNova USA, Inc.; 2022.

Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018 Nov;88S:2-10.

Fisher RS, Afra P, Macken M, Minecan DN, Bagić A, Benbadis SR, Helmers SL, Sinha SR, Slater J, Treiman D, Begnaud J, Raman P, Najimipour B. Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance-The U.S. E-37 Trial. Neuromodulation. 2016 Feb;19(2):188-95.

Elliott RE, Morsi A, Tanweer O, Grobelny B, Geller E, Carlson C, Devinsky O, Doyle WK. Efficacy of vagus nerve stimulation over time: review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years. Epilepsy Behav. 2011 Mar;20(3):478-83.

References

Jain P, Arya R. Vagus Nerve Stimulation and Seizure Outcomes in Pediatric Refractory Epilepsy: Systematic Review and Meta-Analysis. Neurology. 2021 Apr 13:10.1212.

Salanova V, Sperling MR, Gross RE, Irwin CP, Vollhaber JA, Giftakis JE, Fisher RS; SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021 Jun;62(6):1306-1317.

Salanova V, Witt T, Worth R, Henry TR, Gross RE, Nazzaro JM, Labar D, Sperling MR, Sharan A, Sandok E, Handforth A, Stern JM, Chung S, Henderson JM, French J, Baltuch G, Rosenfeld WE, Garcia P, Barbaro NM, Fountain NB, Elias WJ, Goodman RR, Pollard JR, Tröster AI, Irwin CP, Lambrecht K, Graves N, Fisher R; SANTE Study Group. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015 Mar 10;84(10):1017-25.

Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019 Mar;15(3):148-160.

Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, Salanova V, Cole AJ, Smith MC, Gwinn RP, Skidmore C, Van Ness PC, Bergey GK, Park YD, Miller I, Geller E, Rutecki PA, Zimmerman R, Spencer DC, Goldman A, Edwards JC, Leiphart JW, Wharen RE, Fessler J, Fountain NB, Worrell GA, Gross RE, Eisenschenk S, Duckrow RB, Hirsch LJ, Bazil C, O'Donovan CA, Sun FT, Courtney TA, Seale CG, Morrell MJ. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014 Mar;55(3):432-41.

UT Health Austin Pediatric Neurosciences at Dell Children's

